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[4+2] Cycloaddition of 1-phosphono-1,3-butadiene with
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Place Louis Pasteur 1, B-1348 Louvain-la-Neuve, Belgium

Received 4 December 2007; revised 22 December 2007; accepted 9 January 2008
Available online 15 January 2008
Abstract

Under microwave activation, diethyl 1-phosphono-1,3-butadiene (1) reacted with t-butyl azodicarboxylate (2) and o-nitrosotoluene
(5) to furnish quantitatively [4+2] cycloadducts, 3-phosphono-3,6-dihydro-1,2-pyridazine (3) and 6-phosphono-3,6-dihydro-1,2-oxazine
(6), respectively. Selective oxidation and/or reduction of 6 led to functionalized d-aminophosphonic derivatives in cyclic (7, 8) and
aliphatic series (9, 10). Intermediate 10 may be cyclized into 2-phosphono-2,5-dihydro-1-pyrrole (12).
� 2008 Elsevier Ltd. All rights reserved.
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With its well-known potential of forming highly func-
tionalized molecules, in a convergent way compatible with
a wide range of substituents, the Diels–Alder (DA) reaction
(i.e., [4+2] cycloaddition) is a versatile synthetic tool that
can be used for the synthesis of aminophosphonic deriva-
tives.1 These compounds are recognized as an important
class of pharmacologically active molecules effective in
several diseases.2 Surprisingly, aminophosphonic deriva-
tives other than the a-ones have been obtained only via
punctual methods. This stimulates the development of
novel synthetic routes towards such compounds.2,3 Our
interest in cycloaddition reactions leads us to investigate
HDA (hetero-Diels–Alder) reaction4 as a valuable strategy
towards d-aminophosphonic derivatives of potential
interest in medicinal chemistry.5,6 In this Letter, we
describe the [4+2] reaction of phosphono-butadiene (1)
with t-butyl azodicarboxylate (2) and 2-nitrosotoluene (5)
as heterodienophile model compounds (Scheme 1). We
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further demonstrate that cycloadduct 6 is a versatile inter-
mediate leading to various aminophosphonic derivatives
both in cyclic and aliphatic series.

1-(Diethylphosphono)-1,3-butadiene (1) could be read-
ily obtained in two steps from 1,4-trans-dichlorobutene.7

The DA reactivity of 1 was initially studied in 1963 by
Pudovik et al.8 Cycloadditions occurred with acrylonitrile,
1
Ar

Ar = o-Tolyl
5 proximal

(major)
distal 

(very minor)
6

Scheme 1. Reagents and conditions: (a) (CH2Cl)2, 95 �C or MW
activation; (b) TFA, DCM, rt, 15 h.
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Table 1
Microwave activation of diene 1 in HDA reactions

Entry Reagent Conditions Conv.a

(%)
Regioselectivity
proximal/
distala

1 2 DCE, 95 �C, 7 d 55 —
2 2 lW, 650 W, 120 �C, 1 h >99 —
3 5 DCE, 95 �C, 15 h >99 10:1
4 5 DCE, lW, 500 W, 100 �C,

1 h
>99 Proximal

a From 500 MHz 1HNMR on the crude mixture.
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acroleine, ethyl methacrylate and dimethylmaleate, at high
temperature in an autoclave, but in poor yields because
dimerization of the diene was the major process. Similar
observations were reported later by Griffin and co-work-
ers,9 opposing 1 to other electron-poor dienophiles such
as diethyl vinylphosphonate and dimethyl acetylenedi-
carboxylate. In the case of electron-rich dienophiles,
namely enamines, the cycloadditions of 1 were even more
sluggish according to Darling and Subramanian.10

We found that 1 reacted smoothly with t-butyl azodicar-
boxylate (2) under classical thermal conditions to furnish
1,2-(di-t-butyloxycarbonyl)-3-diethoxyphosphono-3,6-di-
hydro-1,2-pyridazine (3) (Scheme 1), while microwave
activation11 provided a significant increase in yields and
reaction rate (Table 1). The cycloadduct was easily purified
by column chromatography on silica gel and characterized
by the usual spectroscopies.12 Deprotection of the Boc
groups with trifluoroacetic acid (TFA) gave the corre-
sponding hydrazine derivative 4 in 95% yield.13

Next, we found that diene 1 reacted more easily with
2-nitrosotoluene14 in refluxing dichloroethane (DCE) to
afford dihydro-1,2-oxazine cycloadducts 6 (Scheme 1) as
a 10:1 mixture of proximal and distal regioisomers, which
were easily separated by column chromatography on silica
gel.15 Interestingly, when microwave activation was
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Scheme 2. Reagents and conditions: (a) K2OsO2(OH)4, acetone–water, rt, 24 h
Pd–C, EtOH, rt, 12 h, >99%; (d) Zn, AcOH, water, 70 �C, 15 h, >99%; (e) CB
applied, the regioselectivity became complete in favour of
the proximal isomer and the reaction time was shortened
(Table 1). This can be explained by the greater synchronic-
ity of the distal transition state versus the proximal one.16

Oxidation of 6 without cleavage of the C–C double bond
was investigated (Scheme 2). Treatment with K2OsO2(OH)4

and N-methyl morpholine oxide (NMO)17 to effect cis-
dihydroxylation of the double bond gave the syn-diol 7 in
high yield (92%).18 1H, 13C and 31P NMR data are consis-
tent with the formation of one stereoisomer, suggesting a
control of the relative stereochemistry by the bulky phos-
phonate. Esterification of 7 with benzoyl chloride afforded
N
O

PO3Et2
O

O

HN

OH
HO

HO

7, R3 = R4 = H

9

R3

R4

8, R3 = R4 = COPhb.

c.

a.

.

PO3Et2

, 92%; (b) benzoyl chloride, DMAP, pyridine, DCM, rt, 2 h, >95%; (c) H2,
r4, Imidazole, Et3N, PPh3, DCM, rt, 15 h, 75%.



J.-C. Monbaliu, J. Marchand-Brynaert / Tetrahedron Letters 49 (2008) 1839–1842 1841
diester 8 that smoothly crystallized from a benzene–ether
5:1 mixture. X-ray diffraction analysis of a monocrystal
confirmed that the phosphonate group is in anti relation-
ship regarding the two syn hydroxyl groups.19

Reductive cleavage of the 1,2-oxazine motif of 7 under
catalytic hydrogenation conditions (Scheme 2) led quanti-
tatively to diethyl 4-(o-tolylamino)-1,2,3-trihydroxybutyl-
phosphonate (9).20

A useful synthetic application of 3,6-dihydro-1,2-
oxazine 6 could be the selective reductive cleavage of the
N–O bond to generate 1,4-difunctional 2-butene deriva-
tives with preserved (Z)-configuration. The currently most
popular way of oxazine cleavage uses freshly prepared
Mo(CO)3(CH3CN)3.21 But in our case the reductive cleav-
age with Zn in AcOH22 was the most efficient method for
preparing (Z)-diethyl 4-(o-tolylamino)-1-hydroxybut-2-
enylphosphonate (10) in quantitative yield.23 The (Z)-rela-
tionship of olefinic protons was confirmed by the observa-
tion of a 3JH–H value of 6 Hz. Oxidation of 10 by using
K2OsO2(OH)4 as previously described led to 9 in low
yields. Thus, the best route to synthesize 9 from 6 is
C@C dihydroxylation followed by O–N cleavage (91%
yield) and not the reversed reaction sequence (42% yield).

Treatment of 10 by hydrogen in the presence of Pd cat-
alyst reduced the C@C double bond and simultaneously
cleaved the o-tolylamine group. This unexpected reaction
furnished the known diethyl 1-hydroxybutylphosphonate
(11).24 Lastly, ring closure of 10 into pyrrolidine-2-phos-
phonic derivative was possible by using PPh3/CBr4 activa-
tion.25 The reactive intermediate (not isolated) underwent
an intramolecular nucleophilic substitution by the aniline
moiety, in the presence of imidazole, leading to diethyl
2,5-dihydro-1-o-tolyl-1-pyrrol-2-yl-2-phosphonate (14)26

(Scheme 2).
In conclusion, we have demonstrated that under micro-

wave activation, HDA reaction of 1-phosphono-butadiene
could be readily performed. This is most probably due to
the high polarizability of reagent 1.27 Reaction with azo
partner 2 followed by N-deprotection represents the best
way to prepare 3-phosphono-1,2,3,6-tetrahydropyridazine
(4), an already known biologically active molecule.5 Reac-
tion with nitroso partner 3 followed by either oxidation or
reduction illustrates the versatility of our strategy towards
d-aminophosphonic derivatives, in particular poly-hydrox-
ylated compounds such as 9. Also, a novel entry into the 2-
phosphono-pyrrolidine (12) family28 has been shown.
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